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A Neural Mechanism of Social Categorization
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Humans readily sort one another into multiple social categories from mere facial features. However, the facial features used to do so are
not always clear-cut because they can be associated with opponent categories (e.g., feminine male face). Recently, computational models
and behavioral studies have provided indirect evidence that categorizing such faces is accomplished through dynamic competition
between parallel, coactivated social categories that resolve into a stable categorical percept. Using a novel paradigm combining fMRI with
real-time hand tracking, the present study examined how the brain translates diverse social cues into categorical percepts. Participants
(male and female) categorized faces varying in gender and racial typicality. When categorizing atypical faces, participants’ hand move-
ments were simultaneously attracted toward the unselected category response, indexing the degree to which such faces activated the
opposite category in parallel. Multivoxel pattern analyses (MVPAs) provided evidence that such social category coactivation manifested
in neural patterns of the right fusiform cortex. The extent to which the hand was simultaneously attracted to the opposite gender or race
category response option corresponded to increased neural pattern similarity with the average pattern associated with that category,
which in turn associated with stronger engagement of the dorsal anterior cingulate cortex. The findings point to a model of social
categorization in which occasionally conflicting facial features are resolved through competition between coactivated ventral–temporal
cortical representations with the assistance of conflict-monitoring regions. More broadly, the results offer a promising multimodal
paradigm to investigate the neural basis of “hidden”, temporarily active representations in the service of a broad range of cognitive
processes.
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Introduction
Humans naturally sort the world into categories to “provide
maximum information with the least cognitive effort” about its
myriad contents (Rosch, 1978; p. 28). In the case of other people,
such categorization occurs automatically (e.g., sex or race), in turn

activating stereotypes and attitudes that influence interpersonal
behavior (Macrae and Bodenhausen, 2000). Although seamlessly
categorized, faces across the human population exhibit natural
within-category variability and thus vary along relevant social
category continua in a graded fashion. Therefore, we frequently
encounter faces that vary in their prototypicality (e.g., a female
face with masculine features). Once perceived, such within-
category variability in facial features can affect the activation of
stereotypes and attitudes (Blair et al., 2002) and bear real-world
consequences (Galinsky et al., 2013).

Initial research acknowledging the possibility of such graded-
ness during social categorization argued against simplified binary
assumptions (i.e., a category is either activated or not). According
to this early account, not only do faces automatically activate a
particular social category, but the strength of that activation can
vary (Locke et al., 2005). More recent computational models,
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Significance Statement

Individuals readily sort one another into social categories (e.g., sex, race), which have important consequences for a variety of
interpersonal behaviors. However, individuals routinely encounter faces that contain diverse features associated with multiple
categories (e.g., feminine male face). Using a novel paradigm combining neuroimaging with hand tracking, the present research
sought to address how the brain comes to arrive at stable social categorizations from multiple social cues. The results provide
evidence that opponent social categories coactivate in face-processing regions, which compete and may resolve into an eventual
stable categorization with the assistance of conflict-monitoring regions. Therefore, the findings provide a neural mechanism
through which the brain may translate inherently diverse social cues into coherent categorizations of other people.
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such as the dynamic interactive model,
posit that multiple social categories are al-
ways activated in parallel to some extent,
particularly when a given face’s features
are associated with different categories
(Freeman and Ambady, 2011). For
instance, a female face with certain mas-
culine features may elicit partial activa-
tions of both male and female categories
early on. This triggers a dynamic compe-
tition process that later stabilizes the cate-
gory percept over time. Recent behavioral
studies have provided evidence for this
process through the use of computer
mouse tracking, in which the attraction of
hand trajectories to unselected response
options (en route to a final response op-
tion) indexes partial activation of multiple
categories during perception (e.g., in the
case of gender and race; Freeman et al.,
2008). However, it is currently unclear at
what level of neural representation social
category coactivation manifests and how
the brain arrives at stable perceptions
from multiple activated social categories.

The fusiform gyrus (FG) and sur-
rounding ventral temporal cortex are in-
volved in face (Haxby et al., 2001) and
social category representation (Contreras
et al., 2013). If multiple social categories
are indeed coactivated by natural mix-
tures of facial features, then we may expect
FG representational patterns of target faces
to simultaneously approximate those of
two distinct category representations in a
graded manner. Indeed, gradations have
been observed recently both within (Ior-
dan et al., 2016) and between (Sha et al.,
2015) semantic category representations
in ventral–temporal cortex and linked to
semantic categorizations behaviorally (Ritchie
et al., 2015). However, research has yet to in-
vestigate how such graded neural represen-
tation may involve the competition and
resolution of coactivated categories.

Once social categories are coactivated, conflict-monitoring
mechanisms are likely important to detect the conflict and help
resolve competition between multiply activated representations
(Botvinick et al., 2001). Indeed, the resolution of competing per-
ceptual representations is integral to categorization responses
(Carlson et al., 2014). A large body of research suggests that such
functions may be performed by the cingulo-opercular network
(Dosenbach et al., 2006), including the anterior insula/frontal
operculum (aI/fO) and, centrally, the presupplementary motor
area and dorsal anterior cingulate cortex (pre-SMA/dACC).
Neuroimaging studies have suggested that more dorsal compo-
nents of the extended pre-SMA/dACC region hold a conflict
monitoring signal over and above other often confounding pro-
cesses in nearby regions, namely task difficulty (Neta et al.,
2014), arousal (Nachev et al., 2005), and prediction error (Jahn
et al., 2016). It has also been proposed that the nature of pre-SMA
processing is more cognitive than the motor processing associated
with the nearby SMA (Nachev et al., 2008). Relevant to the current

research, conflict-monitoring regions have been shown to re-
spond to similar instances of conflictual social category activa-
tions, such as cases in which bottom-up facial features are
inconsistent with top-down expectations (Hehman et al., 2014).
Therefore, here, we hypothesized the engagement of the pre-
SMA/dACC by instances of conflicting social categories.

Materials and Methods
The present work sought to test a model of social categorization in which
social categories are represented in a sensitive, graded fashion in the FG.
In cases of natural inconsistencies frequently encountered in the social
world (e.g., feminine male, a white face with black-related features), we
predict a corepresentation of conflictual social categories in the FG,
which may in turn trigger conflict-related processes in the pre-SMA/
dACC and other cingulo-opercular regions that may help to resolve mul-
tiply activated social categories into stable perceptions. To test this, we
developed a novel paradigm to synchronize fMRI with real-time catego-
rization dynamics assessed by computer mouse tracking.

Figure 1. a, Stimuli across all three tasks. Per categorization task (top: color; middle: sex; bottom: race), faces varied from one
category to another, being either typical or atypical exemplars of their respective categories. b, Behavioral results (n � 16) and
example of mouse-tracking paradigm. Results showed significantly higher maximum perpendicular deviation (MD) toward atyp-
ical (white line) versus typical (black line) targets across tasks (b � 0.05, SE � 0.006, t(15.058) � 7.935, p � 0.0001), demon-
strating increased deviation toward the nonchosen response options (i.e., coactivation). Results in the bar plot are depicted to plot
condition differences intuitively using within-subject error bars (39); however, the analysis was completed in a multilevel mixed
model. In this paradigm, participants clicked a start button, after which the stimulus appeared and they selected response options
in either top corners of the screen (e.g., male vs female; white vs black; red vs blue). Mouse trajectories were recorded continuously
to observe the amount of deviation toward nonchosen responses and index category coactivation. Typical and atypical black faces
are included as examples of these conditions.
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In the scanner, participants (n � 16) made speeded categorizations of
the sex (male vs female) and race (white vs black) of typical and atypical
face targets and, to assess the domain generality of the effects, of the color
(blue vs red) of object targets as well (Fig. 1a). Atypical targets were those
still reliably perceived as belonging to the correct category yet exhibiting
a slight featural resemblance to the opponent category (e.g., male face
with feminine features; Fig. 1a). We hypothesized that right FG (Kan-
wisher et al., 1997; Haxby et al., 2001; specializing in face perception)
multivoxel patterns should show evidence of social category representa-
tion, including the corepresentation of conflictual categories, whereas
the pre-SMA/dACC and cingulo-opercular regions should exhibit a
stronger engagement during such conflicts.

To investigate the coactivation of opponent categories during per-
ception, we measured online mouse trajectories and blood oxygenation-level-
dependent (BOLD) responses from subjects performing a categorization
task during fMRI. We used a fiber-optic computer mouse system
(NataTech) to allow subjects to operate the mouse in the scanner envi-
ronment. Pretesting ensured this introduced negligible motor artifacts.
The experiment involved three separate 2 � 2 within-subjects design
categorization tasks: gender (gender: female vs male � typicality: typical
vs atypical), race (race: black vs white � typicality: typical vs atypical),
and color (color: blue vs red � typicality: typical vs atypical). Participants
also completed a standard demographic survey.

Subjects
Sixteen adult subjects were recruited from the Dartmouth College un-
dergraduate student community (62% male; Mage � 19.37; 6 white, 6
Asian, 2 black, 2 other; all right-handed; number of subjects based upon
recent studies applying similar methods to study face processing; Ratner
et al., 2013; Watson et al., 2014; Stolier and Freeman, 2016). Subjects
were financially compensated or received partial course credit for partic-
ipation. Before the study, subjects underwent an informed consent
process and screening for fMRI scanning, which was approved by the
Committee for the Protection of Human Subjects at Dartmouth College.

Materials
Task. Evidence for social category coactivation has mostly been obtained
via a computer mouse-tracking paradigm. In the mouse-tracking para-
digm, hand movements en route to response options are recorded such
that, in addition to a final categorical response, the hand’s attraction
toward each response option indexes the extent of its activation. For
instance, when categorizing a female face with subtle masculine features,
although participants ultimately select the female response, their hand
trajectory simultaneously exhibits a partial attraction to select the male
response on the opposite side of the screen (Freeman et al., 2008). To
date, such parallel attraction effects in mouse-tracking paradigms have
successfully provided evidence in favor of category coactivation during
the categorization of a face’s sex (Freeman et al., 2008), race (Freeman et
al., 2010), age (Cloutier et al., 2014), or emotion (Mattek et al., 2016).

The use of hand movements as a continuous index of evolving catego-
rization dynamics is widely supported by neurophysiological research
(Cisek and Kalaska, 2005). For instance, in perceptual decision-making
tasks in which a monkey commits a response by reaching in one of two
potential directions, premotor cortical populations initially tune toward
the two response directions simultaneously. As evidence accumulates
over time, gradually, the population for the to-be-selected response is
amplified, whereas that for the unselected response is suppressed, dem-
onstrating that information about a perceptual decision is made imme-
diately available to the premotor cortex as it accrues, rather than once it
has finalized (Cisek and Kalaska, 2005). In humans, event-related poten-
tial studies show that ongoing processing results during categorization
(e.g., evidence for a male vs. female perceptual target and according
response in a categorization task) are immediately and continuously
shared with the motor cortices to steer a hand-guided categorical re-
sponse over time (Freeman et al., 2011b). Such work suggests that a
participant’s hand motion, as recorded in mouse-tracking paradigms,
can reflect dynamic updates of a decision process as it evolves over frac-
tions of a second (Freeman and Ambady, 2010; Hehman et al., 2015).
Nevertheless, hand movements in these paradigms cannot definitively

rule out the possibility that a more indirect trajectory reflects merely a
less decisive movement (i.e., weaker activation of the selected category)
rather than genuine parallel attraction (i.e., coactivation; van der Wel et
al., 2009) and thus would benefit from converging evidence. Although
other methods of detecting competition between response options are
also prevalent (e.g., eye tracking), hand tracking is best suited to the
current context due to its high temporal resolution (providing an index
of response competition �70 times/s) and its continuous manual data
are preferable over discrete oculomotor data for measuring genuine si-
multaneous activation of multiple response options (Freeman and Am-
bady, 2010; Freeman et al., 2011).

Participants completed a set of two-choice categorization tasks within
the fMRI scanner. The task was designed with MouseTracker software
(Freeman and Ambady, 2010). This allowed us to collect online mouse
trajectory data in addition to response decision and timing data (Spivey
et al., 2005; Freeman et al., 2008; Wojnowicz et al., 2009). Mouse-
tracking trials were implemented in a standard two-choice categorization
task. Participants were required to make a speeded two-choice categori-
zation decision once the target stimulus appeared. Subjects first clicked a
start button at the bottom-center of the screen and then used the mouse to
click response options at the top-right and top-left corners of the screen (e.g.,
male vs female). During this motion online x- and y-coordinates of the
mouse were continuously recorded as the participants responded at�70 Hz.
These data were used later to estimate curvature toward opposing responses
(e.g., when categorizing an atypical female face, deviation toward the “male”
response en route to a final “female” response). These deviations were used
as an index of category coactivation.

Stimuli. Face stimuli were generated with FaceGen Modeler. This soft-
ware uses a 3D morphing algorithm based on anthropometric parame-
ters of the human population, in which various social category cues can
be precisely manipulated while holding other extraneous cues constant.
Forty unique face identities were generated for both face categorization
tasks (gender and race; Fig. 1a). These identities were then morphed to
appear as typical and atypical category members (e.g., male and female;
white and black). Atypical category members were still reliably recog-
nized as members of their specified category but displayed facial features
of the opposing category (e.g., female with slight masculine features).
This resulted in a total of 160 face stimuli per task, made up of 4 condi-
tions: category (2: male and female or white and black) � typicality (2:
typical vs atypical).

Color stimuli were 40 household object photographs fully tinted to
different colors. Object photographs were used so as to have an equal
number of exemplars of each category as used in the face tasks. Each
object photograph was colored as typical and atypical colors. Specifically,
each photograph was tinted as typical red and blue, as well as two colors
on the spectrum between red and blue still recognized as their respective
color category condition. Therefore, a total of 160 color stimuli were
generated, made up of 4 conditions: category (2: blue vs red) � typicality
(2: typical vs atypical).

Stimulus condition validation. Given the a priori typicality condition
labeling of stimuli as typical or atypical based upon parameters in their
generation, we collected additional, independent data to validate the
assigned typicality of each stimulus. In an independent online sample, we
had three groups of participants rate the typicality of each stimulus used
in the main imaging study for the color task (ncolor � 25; Mage � 37.84,
SDage � 13.79, 40% male, all white), race task (nrace � 25; Mage � 39.96,
SDage � 14.63, 72% male, all white), and sex task (nsex � 25; Mage �
40.38, SDage � 12.88, 40% male, all white). Participants were recruited
online through Amazon Mechanical Turk and received monetary com-
pensation for their participation. They gave informed consent in a man-
ner approved by the University Committee on Activities Involving
Human Subjects at New York University. Participants were presented
with each stimulus within their assigned stimulus set from the scanner
tasks (160 stimuli per task, as described above) and asked to indicate how
“typical” the stimulus appeared of its respective category (e.g., “How
typical of the color BLUE is this image?”; 7-point Likert items, spanning
1 “Not at all typical” to 7 “Very typical”). Typicality ratings were median
centered within each participant and average typicality scores were com-
puted per stimulus (160 stimuli per task, 480 stimuli in total). To validate
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the condition labeling, we regressed the independent sample typicality
ratings on the condition labels per stimulus (contrast coded: �1 � typ-
ical, 1 � atypical). We found that atypical stimuli were rated as signifi-
cantly less typical than typical stimuli (F(1,478) � 956.112, p � 0.00001). This
analysis validates the generation of stimuli varying along the typicality
condition.

Procedure
Before beginning the experiment, participants completed a practice
shape categorization task (triangles vs squares) in the scanner to famil-
iarize them with the scanner mouse and task. Participants then com-
pleted three two-choice categorization tasks during fMRI: race, gender,
and color. The task order was pseudorandomized per participant; how-
ever, the color task never occurred first. Tasks were completed one at a
time, each comprising four sequential functional runs. Each run in-
cluded 40 total trials with a trial order pseudorandomized optimally for
event-related BOLD signal estimation using optseq (Dale, 1999), pre-
senting each task condition 10 times within the run. Therefore, partici-
pants completed a total of 40 trials per condition over the course of the
experiment. Another 10 trials were null events including a fixation cross
to estimate baseline. Trials were 4000 ms in duration, in which partici-
pants had up to 2500 ms to provide a response. The stimulus was replaced
by a fixation cross after any response or if participants did not respond on
time, which remained on screen until the beginning of the next trial.
During this period, participants were required to return the mouse to
click the “start” button at the bottom of the screen and await the next
trial. The next trial was not presented if participants failed to return to the
start button on time. After the scan, participants completed a general
demographic survey.

Experimental design and statistical analyses
Mouse-trajectory preprocessing. Standard mouse-tracking preprocessing
was used (Freeman and Ambady, 2010). All response trajectories were
rescaled into a standard coordinate space (top left: [�1, 1.5]; bottom
right: [1, 0]) and normalized into 100 time bins using linear interpolation
to permit averaging of their full length across multiple trials. For com-
parison, all trajectories were remapped rightward. To obtain a by-trial
index of category coactivation, we calculated the maximum perpendic-
ular deviation (MD) of each mouse trajectory toward the opposite re-
sponse option. During two-choice mouse-tracking categorization tasks
(e.g., male vs female), deviation in a subject’s mouse trajectory toward an
opposite category response (indexed by MD) is a well validated measure
of the degree to which that other category was also activated during the
perceptual process (Fig. 2b; Spivey and Dale, 2006; Freeman and Am-
bady, 2010; Freeman et al., 2011a).

Image acquisition. Subjects were scanned using a 3 T Philips Intera
Achieva Scanner equipped with a SENSE birdcage head coil in the Dart-
mouth Brain Imaging Center. All stimuli were back projected onto a
screen visible via a mirror mounted on the MRI head coil (visual angle
�13.5 � 13.5°). Anatomical images were acquired using a T1-weighted
protocol (256 � 256 matrix, 128 1.33 mm transverse slices). Functional
images were acquired using a single-shot gradient echo EPI sequence
(TR � 2000 ms, TE � 35 ms). Thirty-five interleaved oblique–axial slices
(3 mm � 3 mm � 4 mm voxels; no slice gap) parallel to the AC–PC line
were obtained.

Data preprocessing and pattern estimation. Preprocessing of the imag-
ing data was conducted using AFNI software (version 16.0.09; Cox,
1996). Functional imaging data preprocessing included high-pass filter-
ing of frequencies, slice timing correction, 3D motion correction, voxel-
wise detrending, spatial smoothing using a 3D Gaussian filter (4 mm
FWHM for pattern analyses; 8 mm FWHM for univariate ANOVA anal-
yses), and time-series z-normalization. Structural and functional data of
each subject were transformed to standard MNI space. We estimated the
average hemodynamic response per voxel for each condition (using the
3dDeconvolve procedure in AFNI). The design matrix included a total of
eight predictors: the four stimulus conditions within each task (typical
and atypical conditions per each of the two categories) and several pre-
dictors of no interest were modeled as well (incorrect responses, no re-
sponses, failed starts, null trials). All predictors were modeled as boxcar

functions across the first 2 s of each event (during which the face stimuli
were presented) and convolved with a gamma variate function (GAM in
AFNI). Trial-by-trial neural response estimates were also performed with
3dDeconvolve and the same response function (GAM) and onset specifica-
tions, however fitting a unique regressor per stimulus presentation time-
point (via the stim_times_IM method). For pattern analysis, we used the
resulting voxelwise t-values (comparing condition responses with base-
line) to comprise the whole-brain patterns of activation per stimulus
condition (either per run for classification analyses or per trial within
each run for trial-by-trial analyses). t statistics were used for multivariate
pattern analyses because they have been found advantageous in analyses
decoding fMRI data and these features were not normalized (Misaki et
al., 2010). For univariate ANOVA analyses, we followed standard proce-
dures and used the resulting voxelwise � values (comparing condition-
responses to baseline) per condition (either per run for ANOVA analyses
or per trial per run for trial-by-trial analyses).

Multivoxel pattern analyses (MVPAs). All MVPAs were performed us-
ing PyMVPA (Hanke et al., 2009). Per task, we performed a two-way
classification between each general category condition (i.e., sex: male vs
female; race: white vs black; color: blue vs red). Classification was exe-
cuted with a support vector machine algorithm. All classification analy-
ses were cross-validated in a leave-one-run-out cross-validation scheme
(n � 1 cross-validation scheme with 4 runs; 2 observations per condition
within each run, therefore 6 observations per condition in the training
data). These analyses were performed whole brain through a searchlight
algorithm (Kriegeskorte et al., 2006). Specifically, cross-validated classi-
fication was performed within a 123 voxel sphere (radius � 3 voxels)
surrounding each voxel in the brain, with average performance of the
classifier mapped back to the center voxel of the sphere. This resulted in
a whole-brain map of average classification performance in each task per
subject to be submitted to group-level analysis.

Group-level analyses and multiple-comparisons corrections. Whole-
brain group-level classification results reported were significance tested
and corrected for multiple comparisons using a cluster-wise nonpara-
metric permutation scheme appropriate to MVPA results acquired
through a searchlight procedure (Hanke et al., 2009; Stelzer et al., 2013;

Figure 2. Results from category searchlight classification per task (n � 16). n-fold cross-
validated classification results (using support vector machines) from a searchlight analysis
(radius � 3 voxels) were analyzed at the group level, indicating regions where general target
category (e.g., female, Black, blue) could be decoded accurately (above chance, i.e., 50% of the
time in a 2-way classification analysis). A swath of cortex spanning earlier ventral and dorsal
streams from early visual cortex (EVC) through the bilateral fusiform gyrus (FG) was found to
hold information about target categories and significantly decode sex, race, and color category
membership. Result maps were significance tested and corrected for multiple comparisons
using a cluster-wise nonparametric permutation scheme (voxelwise p � 0.005; FWE rate of
0.01). All task result maps are depicted on cortical surfaces: a, Sex task. b, Race task. c, Color task.
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GroupClusterThreshold in PyMVPA). This algorithm first performed
within-subject classification accuracy permutation analyses by generat-
ing 100 maps per subject (shuffling classifier labels) and using an identi-
cal classifier and cross-validation method as the nonpermuted analyses.
Next, a voxelwise cluster-forming threshold for the accuracy map was
formed from permutation testing of a group-level map of voxelwise null
distributions (feature-wise threshold of p � 0.005; 100,000 permuted
group-level maps formed via a stratified random sampling bootstrapping
process, averaging maps between participants). These thresholded bootstrap
samples were then used to derive an empirical probability of various clus-
ter sizes in searchlight classification accuracy maps under the null hy-
pothesis [familywise error (FWE) rate of 0.01]. Results reported are
searchlight classification clusters surviving this significance test (Fig. 2,
Table 1).

To compare univariate differences in BOLD responses across regions
of the brain, a 2 (typicality: typical vs atypical) � 3 (task: sex, race, color)
whole-brain mixed-effects ANOVA was conducted (p � 0.01, corrected;
participant included as a random effect; 3dANOVA2 in AFNI). Further-
more, to further explore fundamental task differences, we contrast coded
the main effect of task [1 sex, 1 race, �2 color] in a whole-brain analysis.
This analysis provided a whole-brain map of univariate effects per subject
to be submitted to group-level analyses (b-value maps per typicality, task,
their interaction, as well as the contrast coded effect of face vs color tasks).
For such univariate analyses, we corrected for multiple comparisons
using Monte Carlo simulations (3dClustSim in AFNI; smoothness
estimated by a spatial autocorrelation function). We maintained an
experiment-wide � � 0.01 by using a voxelwise threshold of p � 0.001
with a minimum cluster extent of 83. Minimum threshold and cluster
extents were those provided by the output of 3dClustSim.

Trial-by-trial analyses. To conduct analyses investigating the close
trial-by-trial relationship of mouse trajectories (MDs) and neural re-
sponses (multivoxel pattern effects and univariate activation effects), we
extracted trial-by-trial estimates of independent neural effects within
ROIs identified from each of our whole-brain analyses. From the results
of our classification analysis (Fig. 2, Table 1), we segmented an ROI of the
right FG (rFG) from result maps per task (sex rFG ROI � 198 voxels, race
rFG ROI � 130 voxels; color rFG ROI � 84 voxels). This mask was
created as the portion of the result clusters spanning visual regions that
was upon the ventral temporal cortex, being an intersection mask of the
result map cluster with a ventral temporal lobe mask as defined by the
Harvard–Oxford atlas (Jenkinson et al., 2012). From the results of our
whole-brain univariate ANOVA analysis (Fig. 3, Table 2), we created a
single pre-SMA/dACC ROI from the pre-SMA/dACC cluster responding
significantly stronger toward atypical than typical trials (pre-SMA/dACC
ROI � 295 voxels). Due to the robustness of ANOVA results, the pre-
SMA/dACC cluster that survived significance testing was notably larger
than the rFG ROIs at voxelwise p � 0.005 used to correct classification
analyses (Table 2). Therefore, the pre-SMA/dACC mask was created as
the surviving pre-SMA/dACC cluster at a conservative voxelwise p �
0.0001 to make the cluster a more reasonably comparable size.

To match neural effects to our trial-by-trial behavioral measures, we
extracted them from independent trial-by-trial estimates of neural re-
sponding. Specifically, to acquire a trial-by-trial estimate of category
coactivation in the rFG, within the rFG ROI per task, we extracted the
correlation distance (Kriegeskorte et al., 2008) neural pattern similarity
of each atypical trial to the average neural pattern of its opponent cate-
gory. For instance, on a given atypical male trial, we would estimate the

neural pattern similarity of that trial (e.g., during perception of the atyp-
ical male) to the average neural pattern of its opponent category (e.g.,
average of neural pattern to typical female), therefore indexing the degree
to which an atypical male elicits a neural response similar to female. To
acquire trial-by-trial estimates of potential conflict monitoring activa-
tion, for each atypical trial we extracted the pre-SMA/dACC BOLD re-
sponse estimated in the trial-by-trial general linear model (GLM)
(against baseline), indexing the extent of responsiveness trial-by-trial in
that region to atypical exemplars.

This provided a dataset in which, for each participant, stimulus, trial,
and task, we matched the MD, reaction time (RT), rFG neural pattern
similarity to opponent category, and pre-SMA/dACC atypical activation
for that trial. These datasets were analyzed in R software (http://www.
R-project.org/). We used the multilevel mixed linear model (lmer) from
the R package lme4 (Bates et al., 2014). Unstandardized regression coef-
ficients are reported. All variables were normalized to optimize perfor-
mance of the random slopes algorithm (lmer performs best with similarly
scaled variables; Bates et al., 2014; normalized across subjects, each vari-
able mean set to 0 and SD to 1). This same normalization transformation
was used in later mediation analyses to maintain a similar metric. Each of
these models allowed for random slopes and intercept with specific stim-
ulus identity nested within each participant.

Category competition versus general indecision. Another alternative ex-
planation of increased trajectory deviations is that they merely reflect a
less decisive movement toward the selected response rather than a gen-
uine parallel attraction toward the opposite response. For instance, dur-
ing perception of a less typical white face, participant trajectories may
take a less direct route to the white response due to mere indecision (e.g.,
slower accumulation of evidence in favor of the white category) as op-
posed to genuine attraction to the alternate (black) category reflecting
category coactivation and competition. We conducted an additional be-
havioral experiment to rule out this potential alternative, in which we
included target faces bearing partial cues of both irrelevant and relevant

Table 1. Occipitotemporal regions of activation (extending bilaterally) elicited by
the whole-brain searchlight SVM classification analysis of categories

Task x y z Mean t Mean accuracy Voxels

Race 3 �90 18 4.24 64.5% 3853
Sex 3 �87 21 4.37 65.0% 4187
Color 0 �87 18 4.54 65.8% 4977

p � 0.01 corrected (voxelwise threshold of p � 0.005; FWE rate of 0.01 corrected with a nonparametric permuta-
tion and clustering procedure; Stelzer et al., 2013) per task (color: blue vs red, race: black vs white, sex: female vs
male). Coordinates reported are cluster peak t statistics. Mean accuracy is classification accuracy on average across all
voxels in each cluster.

Figure 3. Results from atypical versus typical contrast from whole-brain typicality � task
group-level mixed effects repeated-measures ANOVA. Results indicate regions where responses
were greater to atypical versus typical category targets on average across tasks (there were no
interactions with task across the brain). Interestingly, we found that the cingulo-opercular
network, the pre-SMA/dACC and FO/IA, responded more strongly to atypical than typical cate-
gory members, suggesting potential involvement of conflict-monitoring processes in response
to increased category coactivation and competition during atypical target perception. The pre-
SMA/dACC cluster was used to construct an ROI for trial-by-trial analyses.

Table 2. Regions of activation elicited by the main effect of typicality in the
typicality � task ANOVA

Region Side x y z Mean t Voxels

Early visual cortex M �3 �84 27 4.39 1038
Frontal operculum/anterior insula R 36 27 6 5.01 532
Frontal operculum/anterior insula L �51 9 36 4.97 470
Pre-SMA/dACC M 3 15 54 5.29 417
Supramarginal gyrus R 57 �63 33 4.62 367
Supramarginal gyrus L �54 �72 27 4.22 291
Superior frontal gyrus L �30 21 54 4.47 183

p � 0.01 corrected (voxelwise p � 0.001 uncorrected with a minimum cluster extent of 83). There was no evidence
of any interactions across the brain between typicality and task. All regions showed greater activation to atypical
relative to typical targets.

L, Left; R, right; M, medial.

Stolier and Freeman • Neural Mechanism of Social Categorization J. Neurosci., June 7, 2017 • 37(23):5711–5721 • 5715



categories. For instance, in a white versus black categorization task, par-
tial Asian cues on a white face would be task irrelevant, whereas partial
black cues on a white face would be task relevant. If participants’ trajec-
tory effects merely reflected less decisive movements because both irrel-
evant and relevant conditions feature the same degree of increased
ambiguity and noise with respect to category cues, then they should elicit
similar MD effects. If trajectory effects can reflect genuine coactivation
and parallel attraction toward the opposite response, then only when
facial cues partially specify the opposite category response will trajecto-
ries deviate toward that response.

Participants. An additional behavioral experiment was performed in
which participants (n � 49) were recruited to perform a computer mouse
tracking task online (Mage � 33.06, SDage � 9.1; 61.22% male; 71.43%
white, 10.2% black, 18.37% other; one participant omitted due to track-
pad use). Participants were recruited online through Amazon Mechani-
cal Turk and received monetary compensation for their participation.
Subjects gave informed consent in a manner approved by the University
Committee on Activities Involving Human Subjects at New York
University.

Task. Participants completed three sets of two-choice categorization
tasks. The task was designed with MouseTracker (see Materials and
Methods; Freeman and Ambady, 2010). Mouse-tracking trials reflect
standard two-choice categorization trials. Participants were required to
make a speeded two-choice categorization decision once the target stim-
ulus appeared. However, participants first clicked a start button at the
bottom of the screen and then used the mouse to click response options
at the top-right and top-left corners of the screen (e.g., “black” vs
“white”). During this motion, online x- and y-coordinates of the mouse
were recorded continuously as the participants responded. These data
were used later to estimate curvature toward opposing responses (e.g.,
when categorizing an atypical black face, deviation toward the “white”
response en route to a final “black” response).

Stimuli. Face stimuli were generated with FaceGen software. Ten
unique face identities were generated. For each identity, three base race
faces were generated (Asian, black, and white). In addition, for each base
race, three race cue conditions were generated: no partial cues (base race)
and partial cues of the two other races. This generated a total of 90 (10
identity � 3 base race � 3 race cues) face stimuli. Each face stimulus was
placed on a gray background (RGB: 175, 175, 175). Relevance of face
partial race cues was determined by task.

Procedure. Participants were instructed to categorize each face accord-
ing to its perceived race. Each participant completed all three tasks (Asian
vs black, Asian vs white, black vs white). Task order was randomly as-
signed for each participant. Within each task, participants categorized a
total of 60 stimuli: per relevant race faces (2), 10 base race faces, 10
relevant cue faces, and 10 irrelevant cue faces. Stimulus presentation was
randomly ordered per task.

Analysis preparation. One subject was removed for not following task
instructions. Consistent with prior face categorization mouse-tracking
work, we limited analysis to correct trials with quick RTs (�2000 ms).
The average error rate across subjects was low (2.44% of trials) and nearly
all RTs were within the target range (98.8% of trials, �2000 ms). To
perform analyses with subject as the unit of analysis, we estimated our
measure of category coactivation (MD) for three conditions within each
subject: base race, relevant partial cues, and irrelevant partial cues. This
analysis was collapsed across task, base race, and partial cues race for
parsimony.

Results
Sex, race, and color categorization proceeded in separate runs.
During neuroimaging, participants categorized targets by mov-
ing a fiber-optic computer mouse. On each trial, a start button
appeared at the bottom center of the screen. Once clicked, the
target face or object appeared at the bottom center of the screen
and participants were asked to click a response at the top-left and
top-right corners of the screen as quickly and accurately as pos-
sible. The movement trajectory recorded during each trial, in-
cluding the MD toward the unselected category response (on the

opposite side of the screen), indexed coactivation of that category
(Fig. 1b; Freeman and Ambady, 2010).

Behavioral results
First, we analyzed the relationship between MD and target typi-
cality to assess behavioral measures of coactivation and competi-
tion between categories due to partial cues of the opponent
category. We used a multilevel random-slopes model to regress
MD upon typicality (typical vs atypical; coded �1 and 1, respec-
tively) on a trial-by-trial basis across tasks (allowing for random
intercepts and slopes, with face identities nested within subjects;
this model structure was used for all subsequent analyses). Con-
sistent with prior mouse-tracking studies involving sex, race, and
color categorization (Freeman et al., 2008, 2010; Freeman and
Ambady, 2010), there was significantly higher MD during atypi-
cal compared with typical trials [b � 0.122, SE � 0.015, t(15.058) �
7.935, p � 0.0001, 95% confidence interval (CI) � 0.091– 0.153;
Fig. 1b], suggesting that mouse trajectories were partially at-
tracted to the opposite category response due to atypical cues
related to that category.

Rather than providing evidence for a parallel competition
between coactivated categories, increased MD could also be spu-
riously produced from sequential shifts in movements. Specifi-
cally, our prediction is that, throughout the response trajectory, a
participant’s movement in the atypical condition should always
reflect a dynamically weighted combination of movement toward
both categories due to parallel activation (e.g., both male and
female; both white and black). If true, then the average trajectory
in the atypical condition should exhibit graded, partial attraction
toward the opposite category en route to the selected category.
However, a higher average MD could also be caused by non-
graded activations with several discrete-like errors in which, on
some trials, one category activates �100% (straight movement to
“female”), followed by a subsequent correction and the other
category activating �100% (straight movement toward “male”).
If all trials in the atypical condition exhibited such discrete shifts,
then the average trajectory would clearly be shaped as such, which
was not the case (Fig. 1b). However, if only a subpopulation of
trials in the atypical condition exhibited such shifts, it is possible
the average trajectory would spuriously exhibit graded, partial
attraction, but the amount of attraction (MD) would be bimod-
ally distributed. This is because some trials would involve a shift
(i.e., extreme attraction), whereas others would proceed nor-
mally with a direct movement (i.e., zero attraction). The modality
of the MD distribution was tested with Hartigan’s dip statistic,
a method found to most reliably distinguish between such
discrete-shift versus parallel-attraction trajectory profiles in
mouse-tracking experiments (Freeman and Dale, 2013). There
was no evidence of multimodality in the MD distribution of the
atypical condition (Datypical � 0.0043, patypical � 0.9831, n.s.), nor
in that of the typical condition (Dtypical � 0.0031, ptypical �
0.9977, n.s.; Dall � 0.0019, pall � 0.9999, n.s.).

Together, these findings cement the evidence that the trajec-
tory attraction effects observed in the fMRI experiment reflect
genuine coactivation of both social categories in parallel, rather
than a subpopulation of discrete-like error responses or a mere
weaker representation of the selected category and less decisive
movement.

Neuroimaging results
Category representational analyses
We first sought to identify regions involved in representing faces’
social categories. Rather than assessing response differences be-
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tween conditions averaged across voxels within a region, MVPAs
may identify regions where conditions reliably elicit distributed
multivoxel patterns of local activity, which is often the case in
perceptual representation (Haxby et al., 2001). We performed
classification to identify regions that could discriminate between
overall category conditions above chance (male vs female; white
vs black; blue vs red). A searchlight procedure was used, in which
classification analyses (via support vector machines) were con-
ducted iteratively in local searchlight spheres throughout cortex
(Kriegeskorte et al., 2006). We limited these analyses to occipital
and ventral–temporal cortex given their well established role in
perceptual representation of such stimuli (Kanwisher et al., 1997;
Haxby et al., 2001). Searchlight analysis (FWE rate of 0.01,
corrected) revealed a single broad swath spanning occipital
and early ventral–temporal cortex, including the FG, which
exhibited above-chance classification accuracies in all three
tasks (Fig. 2, Table 1). These findings are consistent with prior
research observing categorical representation of faces and col-
ors in these regions (Brouwer and Heeger, 2013; Contreras et
al., 2013; Freeman and Johnson, 2016; Stolier and Freeman,
2016).

Having confirmed that faces’ sex and race categories were
indeed reflected in multivoxel patterns of the FG and other ven-
tral–temporal regions involved in perceptual representation, we
next tested whether the multivoxel pattern elicited by a given face
approximates that associated with the face’s opponent category
to the extent that the face bears cues associated with that category.
Specifically, we were interested in whether the extent of coactiva-
tion of an opponent category (e.g., female for a male face), as
measured by MD, is associated with a stronger approximation in
right FG multivoxel patterns toward those associated with that
opponent category (e.g., female). To do so, we first estimated the
neural pattern representational similarity (Kriegeskorte et al.,
2008) of each trial category representation to its opponent cate-
gory’s. This was calculated as the similarity of each atypical trial
voxel pattern to the average voxel pattern of the opponent cate-
gory (Pearson correlational distance; 1 � r). For instance, we
calculated the representational similarity of each atypical male
trial voxel pattern to the average voxel pattern of the typical fe-
male condition. These trial-by-trial data were calculated within
the rFG region elicited by our searchlight classification analysis
(see Materials and Methods). Whereas the whole-brain search-
light demonstrated the discriminability of categories collapsing
across typicality conditions (e.g., male vs female regardless of
typicality), here, we performed an independent analysis within
the atypical condition. Specifically, we assessed the trial-by-trial
relation of each atypical exemplar’s neural-pattern similarity
with that trial’s associated MD, an analysis that is statistically
independent from the initial whole-brain analysis (overall dis-
criminability of categories within each subject). Using multilevel
regression that can incorporate trial-by-trial data (performed in
R with lme4), rFG neural category similarity values were re-
gressed upon MD, finding a significantly positive relationship
between rFG pattern similarity and MD (b � 0.015, SE � 0.003,
t(17.284) � 4.427, p � 0.0004, 95% CI � 0.008 – 0.023). Therefore,
to the extent that participants were partially attracted to the al-
ternate category response behaviorally (e.g., toward “male” for a
female face), rFG patterns exhibited a degree of greater simi-
larity to that alternate category (e.g., male).

Category competition analyses
To identify neural regions responsive to the extent of coactivation
and competition, we first conducted a 2 (typicality: typical vs

atypical) � 3 (task: sex, race, color) whole-brain mixed-effects
ANOVA (p � 0.01, corrected; participant included as a random
effect; 3dANOVA3 in AFNI). This revealed a significant main
effect of typicality, with stronger BOLD responses to atypical
versus typical target faces in the cingulo– opercular network, in-
cluding the pre-SMA/dACC and aI/fO (Fig. 3, Table 2). No re-
gions were elicited by the typicality � task interaction effect that
survived correction (p � 0.01, corrected).

More importantly, we sought to further characterize the na-
ture of the pre-SMA/dACC’s stronger responses to atypical ex-
emplars. Although suggestive that the pre-SMA/dACC may be
involved in monitoring for conflicting coactivations that are
more present in the atypical condition, stronger evidence in sup-
port of this hypothesis is that pre-SMA/dACC response in this
context is specifically responsive to category coactivation; if so,
then pre-SMA/dACC activation should correlate with MD on a
trial-by-trial basis. Using the pre-SMA/dACC region elicited by
the previous whole-brain analysis (see Materials and Methods),
trial-level mean responses within this ROI were calculated to ex-
amine the relationship of pre-SMA/dACC activity with trial-by-
trial behavioral indices of category competition (MD). A separate
GLM was constructed to estimate mean pre-SMA/dACC re-
sponse for each trial (see Materials and Methods). Within this
ROI of the pre-SMA/dACC, we performed an analysis wherein
trial-by-trial neural responses for only atypical targets were ex-
tracted and their relationship with trial-by-trial MD was
tested. Note that this represents an independent analysis from the
initial whole-brain contrast of atypical � typical.

Consistent with our hypothesis, regressing pre-SMA/dACC
activation on MD in a trial-by-trial fashion indicated a signifi-
cantly positive relationship (b � 0.120, SE � 0.025, t(14.552) �
4.76, p � 0.0003, 95% CI � 0.081– 0.196). To more stringently
assess the nature of the pre-SMA/dACC response, we also per-
formed this analysis while additionally controlling for an alterna-
tive explanation of pre-SMA/dACC responses, namely mere task
difficulty (i.e., RTs) and motor effort (i.e., total hand motion
and force; summated velocity and absolute acceleration across
all time points in the mouse-trajectory data per trial). If pre-
SMA/dACC responsiveness reflected task difficulty alone
rather than genuine coactivation, then controlling for trial-
by-trial RT should eliminate the correlation with MD. In ad-
dition, if pre-SMA/dACC responsiveness reflected mere
motor effort due to task demands of more atypical trials (given
the putative recruitment of regions surrounding the pre-SMA
in motor preparation as well; Nachev et al., 2008), then con-
trolling for trial-by-trial motor effort indices should eliminate
the relationship with MD. Indeed, prior work has identified a
signal for conflict processes separable from other pre-SMA/
dACC signals such as task difficulty through such covariate
analyses (Neta et al., 2014). We regressed pre-SMA/dACC ac-
tivity upon MD controlling for RT (task difficulty), summated
x-/y-axis velocity (total motion), and summated absolute ac-
celeration (total force), again finding a significant positive
relationship between pre-SMA/dACC activation and MD (b �
0.083, SE � 0.029, t(23.2) � 2.884, p � 0.0083, 95% CI �
0.027– 0.143). These findings suggest that the pre-SMA/dACC
is specifically responsive to competition between opposing
social category responses above and beyond the mere diffi-
culty and motor effort of the categorization (Nachev et al.,
2008; Jahn et al., 2016), which is consistent with certain prom-
inent accounts of this region.
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Mediation analysis
Last, if competition between coactivated
categories in the rFG elicits conflict-
monitoring processes in the pre-SMA/
dACC, then we may expect increased pre-
SMA/dACC activity on trials with greater
rFG category coactivation. Specifically, we
tested a mediation model in which MD
(behavioral index of competition) medi-
ates the relationship between rFG pattern
similarity (category coactivation) and
pre-SMA/dACC activity. We tested this
model with the multilevel approach put
forth by Bauer et al. (2006), which uses a
Monte Carlo simulation (10,000 itera-
tions) to estimate 95% CIs for the total
and indirect effect. Consistent with the
previous analyses, there was a significant to-
tal effect (p � 0.0001, 95% CI � 0.24235–
0.36201), with a positive relationship
between rFG category coactivation and
pre-SMA/dACC activation. More importantly, there was a sig-
nificant indirect effect of MD ( p � 0.005, 95% CI � 0.0031–
0.01563), supporting our hypothesis that the positive
relationship between rFG pattern similarity and pre-SMA/
dACC responses may partly be accounted for by the competi-
tion between category activations (Fig. 4; bindirect effect �
0.00893, SEindirect effect � 0.00321, pindirect effect � 0.005, 95%
CI

indirect effect
� 0.00263– 0.01523; bpath a � 0.08029, SEpath a �

0.01745; bpath b � 0.1043, SEpath b � 0.02374; bpath c � 0.30237,
SE

path c
� 0.03056, ppath c � 0.0001, 95% CIpath c � 0.24246 –

0.36227]; bpath c� � 0.2934, SEpath c� � 0.0301). Together, this
suggests that competition between category coactivations in the
rFG may trigger stronger responses in the pre-SMA/dACC that is
then engaged to help resolve such conflict.

Category competition versus general indecision
Last, we analyzed our additional data to rule out the alternative
explanation that increased trajectory deviations are merely due to
less decisive movement toward the response. We used a repeated-
measures ANOVA with Helmert coding to make two primary
comparisons: (1) relevant cues versus both irrelevant cues and
base race and (2) irrelevant cues versus base race. We found rel-
evant cues to elicit significantly greater MD (M � 0.509) than
other conditions on average (M � 0.475; F(1,48) � 7.006, p �
0.01). Pairwise comparisons revealed that, whereas relevant cues
(M � 0.509) elicited significantly higher MD than both irrelevant
cues (M � 0.478; t(48) � 2.214, p � 0.034) and base race (M �
0.472; t(48) � 2.567, p � 0.014), there was no evidence of a
difference between irrelevant cues and base race (t(48) � 0.486,
p � 0.629).

These results show that relevant partial other race cues elicited
increases in MD relative to no partial cues and irrelevant partial
cues, whereas irrelevant partial cues did not elicit MDs relative to
no partial cues. Therefore, only when a face bore cues specifying
the alternate category did participants exhibit a parallel attraction
to that category; mere ambiguity or uncertainty was not sufficient
to elicit MD effects. These findings confirm the specific sensitivity
of MD to task-relevant cues and category coactivation, rather
than mere indecision.

Discussion
Through the integration of mouse-tracking and neuroimaging,
we found convergent evidence that multiple social categories are
simultaneously and partially activated during the perception of
faces whose features partly overlap with other categories (e.g.,
feminine male face). Specifically, while categorizing faces’ gender
or race, or objects’ color, participants’ hand trajectories partially
deviated toward the opposite category response when a target’s
features resembled that category. Such results are evidence for
coactivation between social categories that compete over time,
consistent with previous behavioral studies (Freeman and
Johnson, 2016), and additional analyses ruled out alternative
explanations such as discrete-like errors or mere indecisiveness.
Neuroimaging results demonstrated that such social category co-
activation was reflected in the similarity of multivoxel patterns in
the rFG and ventral visual stream. To the extent that participants’
response trajectory exhibited a parallel attraction to an opponent
social category (e.g., male for a feminine male face), the elicited
rFG pattern was correspondingly more similar to the average
pattern associated with that opponent category. In turn, this in-
creased pattern similarity effect predicted stronger overall pre-
SMA/dACC activation, likely reflecting the pre-SMA/dACC’s
role in detecting and resolving the category inconsistency. More-
over, such results were not limited to the social domain (sex,
race), instead generalizing across nonsocial categorization as well
(color).

The present findings bolster previous behavioral studies sug-
gesting that perceivers translate a natural spectrum of facial cues
into stable categorizations of other people through a competition
process involving multiply activated categories (Freeman and
Johnson, 2016), as proposed by recent computational models of
social categorization (Freeman and Ambady, 2011). Earlier ac-
counts proposing activation of a single category representation of
variable strength (Locke et al., 2005) are not well accommodated
by the findings. Comparisons of neural responses across social
and nonsocial categorization strongly converged, supporting
accounts that social categorization draws on domain-general
mechanisms suited to other forms of perceptual categorization
(Freeman and Ambady, 2011). Indeed, dynamic competition be-
tween coactivated representations is prevalent across domains,

Figure 4. Results from multilevel mediation analysis. A significant indirect effect of category coactivation was observed ( p �
0.005,95%CI�0.0031– 0.01563),wheretherelationshipbetweenrFGpatternsimilarityandpre-SMA/dACCactivation(totaleffect:path
c; b

path c � 0.30237, SEpath c � 0.03056, ppath c � 0.0001, 95% CIpath c � 0.24246 – 0.36227) was partly accounted for by the extent of
category competition as measured behaviorally (MD; reduced effect: path c’; bpath c� � 0.2934, SEpath c� � 0.0301). This result suggests
that visual representations approximating the target category (e.g., male) and its competitor (e.g., female) simultaneously may lead to
increased category competition, which in turn leads to stronger engagement of the pre-SMA/dACC. Results were significance tested with a
Monte Carlo simulation (10,000 iterations) to estimate confidence intervals for the total and indirect effect (for other effects, *p � 0.05,
**p � 0.01, ***p � 0.0001). Unstandardized betas and their SEs are reported per path.
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such as motor decision making (Cisek and Kalaska, 2010), object
recognition(O’Reillyetal.,2013),andlanguageprocessing(Spiveyetal.,
2005), and may therefore reflect a common computational prop-
erty of cortical representation (Cisek and Kalaska, 2005, 2010;
Rolls, 2000). Therefore, we believe that it is important to high-
light that the results here likely reflect domain-general proper-
ties of perception and cognition. Indeed, prior work has found
ventral-temporal cortical representation to cluster category
members conceptually (Connolly et al., 2012) and centrally
around intracategory norms (Leopold et al., 2006). Our findings
extend this work, suggesting a process by which such representa-
tions may approximate other categories during competition and
the role of conflict-monitoring and top-down modulation of the
pre-SMA/dACC in assisting this competition.

The current results have several implications for understand-
ing ventral–temporal representation. The ventral visual cortex
has been long known to house distinct information about visual
categories (Goodale and Milner, 1992; Haxby et al., 2001). Recent
research has uncovered much about this process, such as selec-
tivity for prominent categories (faces, places, and bodies; Vul et
al., 2012), conceptual organization by animacy (Connolly et al.,
2012), and predominance of basic-level category structure (Ior-
dan et al., 2015). However, research has yet to probe directly how
category representation unfolds and is influenced by other cate-
gories inherently in competition with the target. One recent study
found representational distance of visual objects from a represen-
tational decision boundary (animate vs inanimate) to predict
behavioral animacy categorization RTs (Carlson et al., 2014).
This finding shows how representational space relevant to a more
abstract category (animacy) may underlie perceptual decision
making. This speaks largely to the viability of perceptual decision
making having a basis in earlier perceptual cortices (cf. Freedman
and Assad, 2011). However, the current findings provide a novel
demonstration of how categories are represented in relation to
one another, specifically in relation to perceptually competing
categories. This speaks beyond explicit perceptual decisions and
shows that competitive components of behavioral responses over
and above explicit decisions are manifest in ventral–temporal
neural pattern similarity.

The dACC has been shown to play an important role in the
detection and signaling of information-processing conflicts (Bot-
vinick et al., 1999). The pre-SMA/dACC is considered part of a
wider ranged cingulo-opercular network entailing the pre-SMA/
dACC and aI/fO (Neta et al., 2014). In the case of categorization,
prior research has found responsiveness of these regions to cate-
gorization uncertainty (Grinband et al., 2006) and the presence of
stereotypically incongruent social categories (Hehman et al.,
2014; Cassidy et al., 2017). However, pre-SMA/dACC function
has been a large topic of debate due to competing explanations. A
recent study assessed the contribution of multiple accounts to
pre-SMA/dACC responsiveness: ambiguity (i.e., conflict), accu-
racy, and RT (Neta et al., 2014). The investigators found that each
separately contributed to the regional response. In our analyses,
we focused on correct categorization trials and statistically con-
trolled for RT. In addition, we used a unique behavioral index of
category competition (or conflict), MD, directly measuring the
tentative commitment to a response that was considered but not
ultimately selected. The results therefore suggest that pre-SMA/
dACC response in this context is more indicative of conflict-
monitoring functions triggered by multiple social category
coactivation rather than mere difficulty or ambiguity (i.e., RT).
Therefore, the data bolster findings and theory of unique
conflict-monitoring functions in this region (Botvinick et al.,

1999; Botvinick et al., 2001; Neta et al., 2014) and suggest this a
response to category competition.

More specifically, one perspective is that, when considerable
conflict between representations is detected, the pre-SMA/dACC
may be recruited to assist the category competition performed in
ventral–temporal regions by directing more cognitive resources
(Narayanan et al., 2013; Cavanagh and Shackman, 2015) or in-
creasing attention toward relevant stimulus properties and away
from irrelevant stimulus properties (Sheth et al., 2012; Oehrn et
al., 2014; Ullsperger et al., 2014; Tang et al., 2016). This is consis-
tent with recent theories on this region’s function in the expected
value of control more generally (Shenhav et al., 2013). Compu-
tational models such as attractor neural network models suggest
that ventral–temporal regions such as the fusiform cortex alone
could force partially active social category representations to
compete via lateral inhibition and nonlinear dynamics that do
not require any outside mechanism (Rolls, 2000; Usher and
McClelland, 2001; Freeman and Ambady, 2011; Wyatte et al.,
2012). Accordingly, the pre-SMA/dACC may not be involved in
intervening directly on ventral–temporal competitive dynamics,
but may serve an important role in directing critical cognitive and
attentional resources needed to more rapidly resolve the compe-
tition and adapt ventral–temporal regions to the most diagnostic
perceptual cues for the task at hand. Such bidirectional interac-
tion between these regions could be supported by their well doc-
umented structural and functional connectivity (Dosenbach et
al., 2007; Shenhav et al., 2013). Although speculative, future re-
search could test these issues directly.

The novel paradigm of synchronized neuroimaging and
mouse tracking has numerous implications for understanding
the neural basis of “hidden” response activation that may not
manifest in an explicit behavioral response, whether in social
categorization or otherwise. Mouse tracking without neuroimag-
ing has now been leveraged in numerous domains across the
cognitive sciences, including moral decision making (Koop,
2013), numerical cognition (Faulkenberry, 2016), perceptual de-
cision making (Lepora and Pezzulo, 2015), memory encoding
(Papesh and Goldinger, 2012), emotional processing (Schneider
et al., 2015), and self-control (Ha et al., 2016). In the present
work, the trajectory data allowed us to disambiguate parallel
competitive from discrete responses, measure a more direct in-
dex of category competition (over and above RT), and collect
data along the time course of each response. Furthermore,
through the integration of recent MVPA approaches (RSA;
Kriegeskorte et al., 2008), we were able to predict similarity of
neural patterns on a trial-by-trial basis (Carlson et al., 2014). This
technique could also potentially lock neural responses to differ-
ent temporal components of motion trajectories, allowing a de-
gree of temporal precision unprecedented in fMRI research due
to the temporal resolution of the method. We believe the collec-
tion of dynamic behavioral data during neuroimaging could be of
great promise to a number of research areas.

Nevertheless, there are several limitations of the current re-
search. Our ability to make inferences about neural responses
from correlational data limits our interpretations of these find-
ings (Poldrack, 2006). Our understanding of these complex net-
works will rely on the accumulation of convergent evidence from
multiple measurement methodologies, especially along with ex-
perimental designs (e.g., TMS; cognitive control manipulations).
Moreover, although we are interested in a dynamic process that
unfolds rapidly and uses mouse tracking to gain insight into this
process, we cannot make strong inferences about the temporal
dynamics of the neural response involved due to limited tempo-
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ral resolution of fMRI. Therefore, in modeling the interplay of the
rFG and the pre-SMA/dACC, the statistical mediation is sugges-
tive of a possible causal chain of events, but the correlational
nature limits any strong inference. Despite this, the role of rFG
pattern-similarity in representing social categories, including
coactivated categories, and the pre-SMA/dACC and cingulo-
opercular response to such pattern similarity effects in the pres-
ence of coactivated categories is clear.

In summary, the members of any social category that we en-
counter are rarely a perfect prototype of that given category. Not
only do they deviate in the degree of their membership, but also
to the extent that their cues relate to alternative, opponent cate-
gories. Although recent computational models and behavioral
studies have suggested that this leads to the coactivation and
competition of potential categories (Freeman and Ambady, 2011;
Freeman and Johnson, 2016), the neural basis of how the brain
resolves occasionally conflicting cues into social categorical per-
cepts has remained unclear. The present results provide evidence
that, in processing the gender or race of a face, opponent social
categories coactivate in the rFG, which compete and may resolve
into an eventual stable categorization with the assistance of the
pre-SMA/dACC. Therefore, the findings provide a neural mech-
anism through which the brain may translate inherently diverse
social cues into coherent categorizations of other people.
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