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Facing up to stereotypes
Martin N Hebart & Chris I Baker

Our understanding of faces reflects both our perception of their facial features and our social knowledge. This 
interaction of stereotypes and vision can be observed in brain signals in fusiform gyrus and orbitofrontal cortex.

Walking on the sidewalk on a busy day, we can 
pass hundreds of faces, each of them unique 
and constantly changing. A face can tell us 
much about a person, including who they are, 
how they feel, even what they are attending to.  
Our ability to extract this information is sup­
ported by a network of brain regions that 
analyze different features of a face and help us 
form a coherent percept of the person. But this 
percept is more than just the physical features 
of the face: it also reflects our prior knowl­
edge and associations of social categories, or 
stereotypes. These stereotypes facilitate—and 
often oversimplify—the way we perceive our 
social world and may cause separate social 
categories to become related. For example, 
faces of one race may be more associated with 
negative facial expressions1. Are these stereo­
types an interpretation of an unbiased visual 
representation of a face, or does our social 
knowledge shape the way we process the visual  
information itself?

In this issue of Nature Neuroscience, Stolier 
and Freeman2 demonstrate interactions 
between stereotypes and the visual processing 
of faces. They measured stereotypes as associa­
tions between sex, race and emotional state. 
Using fMRI, they observed brain responses 
congruent with those stereotypes in both the 
fusiform gyrus, home of the fusiform face 
area3, and the orbitofrontal cortex.

The authors measured the influence of ste­
reotypes on subjective perception by asking 
participants to rapidly categorize images of 
faces by sex (male, female), race (black, white, 
Asian), or emotion (angry, happy) (Fig. 1). 

Participants responded using a computer  
mouse, dragging the cursor to one of the 
two options displayed on the screen (such as 
“Angry” or “Happy”). By measuring subtle  
deviations in the trajectory of the cursor  
toward the incorrect option, Stolier and 
Freeman could determine how stereotypes 
influenced the perception of a given category.  
For example, when the person saw a  

picture of a happy male and chose between 
angry or happy, and their mouse trajectory 
deviated momentarily toward angry, that 
would indicate an association or stereotype 
between male and angry.

The goal of the study was to relate the  
subjective perception of faces both to social 
conceptual knowledge and to brain responses. 
To enable comparison between these  

Figure 1  Mapping stereotype responses to brain activity. The authors used dissimilarity matrices to 
compare behavioral measures of conceptual stereotypes with patterns of brain activity. Participants 
categorized faces (top left) varying in race, sex and emotional state using a computer mouse.  
The researchers first generated behavioral dissimilarity matrices by creating a pattern of stereotype 
responses for each face image (top left) based on deviations in mouse trajectory from the correct 
response. Then they computed all pairwise comparisons of these patterns and entered them into a matrix  
(top middle). The faces were also compared with multiple computational visual models (bottom left) 
to produce dissimilarity matrices based on simple visual features (bottom middle). Finally, fMRI 
dissimilarity matrices (right) were generated from patterns of brain activity in local ‘searchlights’  
that were moved throughout the entire brain (top right). To identify brain regions reflecting stereotypes 
while controlling for visual features, the mouse tracking and computational dissimilarity matrices 
served as predictors for the fMRI dissimilarity matrix in a multiple regression framework. This analysis 
yielded parameter weights (β1 and β2) representing the strength of contribution of each of the 
predictors to the fMRI responses for each location in the brain. Searchlights showing a match  
between mouse tracking and fMRI dissimilarity matrices reveal brain regions reflecting the  
stereotypes held by participants, while controlling for the influence of low-level features.
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different types of data, the authors formed 
what is known as dissimilarity matrices. For 
all possible combinations of sex, race and emo­
tion, these matrices plot the extent to which 
each pair of faces are related or not—the dis­
similarity of those faces (Fig. 1). Dissimilarity  
matrices provide a convenient way to summa­
rize the relative responses to the set of faces 
and enable a principled approach for compar­
ing representations measured behaviorally 
with brain activity measured with functional 
magnetic resonance imaging (fMRI)4.

Using the mouse tracking data, the authors 
created a unique stereotype pattern for each 
face that was composed of the behavioral  
trajectory data of all seven features that  
were interrogated during the task (Fig. 1).  
This allowed them to compare the different 
faces in terms of the correlations between 
those patterns. For example, the behavioral 
response pattern to a happy Asian male face 
may exhibit a greater dissimilarity to the 
response to an angry Asian male than to the 
response to a happy white female. All pair­
wise comparisons were then entered into the  
dissimilarity matrix.

To confirm that the mouse tracking data 
do reflect social conceptual knowledge, the 
authors also asked a separate group of partici­
pants to rate a large set of traits (for example, 
aggressive, intelligent) as stereotypical of a 
particular sex, race, or emotional state and 
determined the overlap in these stereotypi­
cal associations. The results matched those 
from the mouse tracking data, confirming 
that the conceptual associations between 
social categories are reflected in how they 
are perceived.

In the next step, the authors built dissimi­
larity matrices based on fMRI responses. 
Participants viewed the same set of faces 
while inside the fMRI scanner. They did not 
make social judgments about the faces, but 
were asked to view and remember the faces. 
To identify brain regions reflecting the mouse 
tracking dissimilarity matrix, the authors 
used a ‘searchlight’ analysis. Specifically, for 
a given location in the brain, the authors  
analyzed the local pattern of brain responses 
in a sphere of voxels centered at that location. 
By comparing the pattern of response elicited 
by each face, the authors constructed a fMRI 
dissimilarity matrix. The crucial step of the 
analysis was comparing the resulting fMRI 

dissimilarity matrix to the mouse tracking dis­
similarity matrix. This process was repeated 
for all locations in the brain to identify brain 
regions showing the strongest correspondence 
between the fMRI and mouse tracking dissimi­
larity matrices. These analyses revealed a good 
match between these dissimilarity matrices in 
both orbitofrontal cortex and fusiform gyrus 
in the right hemisphere. In other words, the 
entangled social category knowledge appeared 
to be directly reflected in these areas.

An alternative interpretation of this result, 
however, is that the fMRI dissimilarity matri­
ces reflect not social categories, but visual 
similarities between the faces that correlate 
with the social category information but that 
are not required for eliciting the perception of 
stereotypes. Indeed, parts of early visual cortex 
also showed a correspondence with the behav­
ioral dissimilarity matrices.

To rule out a contribution of visual proper­
ties, the authors conducted a critical second  
fMRI experiment in a new group of parti­
cipants. They minimized the contribution 
of simple visual information by matching  
the faces for visual features such as overall 
contrast. Further, they computed additional 
dissimilarity matrices based directly on 
visual information (for example, silhouette 
of each face, pixel intensities) and on a widely 
used computational model of the visual pro­
cessing hierarchy (HMAX5). To distinguish 
the unique contribution of each of these dis­
similarity matrices to the fMRI responses, 
they conducted a multiple regression analy­
sis, with both mouse-tracking and visual-
model-based dissimilarity matrices serving 
as separate predictors. Even when taking 
the visual models into account, this analysis 
again pointed to right fusiform gyrus and 
orbitofrontal cortex, and early visual cortex 
involvement was no longer observed. These 
results confirm the interaction of social con­
ceptual knowledge and visual processing in 
the fusiform gyrus.

Such interactions between conceptual 
knowledge and visual processing are not lim­
ited just to faces but may be a general feature 
of the visual system. Indeed, the encoding and 
processing of visual information interacts with 
attention, value and, more generally, task (for 
example, refs. 6–8).

An open question is how specific these 
effects of social categories are to the group 

of participants tested, who likely all had very  
similar cultural backgrounds and thus pre-
existing knowledge. Directly manipulating 
stereotypes or testing groups of participants 
with different stereotypes (for example, from 
different cultures) would provide stronger 
support for the interaction of social category 
knowledge and visual processing. In an addi­
tional analysis, the authors showed that the 
fMRI responses reflected idiosyncratic stereo­
types in orbitofrontal cortex, but only weakly 
so in fusiform gyrus, perhaps as a result of the 
limited variation across participants.

One limitation of the study is that it is 
unclear at what stage of processing these 
interactions emerge. One possible explanation  
of their results is that there are recurrent 
interactions between fusiform gyrus and orb­
itofrontal cortex during the presentation of a 
face. Alternatively, long-term experience could 
lead to changes in the bottom-up processing of 
faces that do not depend on ongoing interac­
tions between regions. In addition, the study 
does not provide insight into the nature of 
these stereotype representations. The behav­
ioral and neural representational patterns may 
be the consequence of a representational space 
with much lower dimensionality. For example, 
a principal axis in this representation may be 
the valence associated with a face (positive ver­
sus negative). Investigating the nature of these 
representations is an important question to be 
addressed in future research.

Despite these open questions and limi­
tations, the study by Stolier and Freeman2 
provides a striking demonstration of the inter­
action between the bottom-up processing of 
visual input and conceptual knowledge.
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